DECONSTRUCTING CALCULATION METHODS, PART 4: DIVISION

In the final article of a series of four, Ian Thompson deconstructs the primary national strategy’s approach to written division. The other three articles in the series appeared in MT202, MT204 and MT206.

In the introductory section to division on page 16 of the primary national strategy’s ‘Guidance paper’ Calculation (DfES, 2007), we are informed that:

‘These notes show the stages in building up to long division through Years 4 to 6 – first long division TU ÷ U, extending to HTU ÷ U, then HTU ÷ TU, and then short division HTU ÷ U’.

This progression seems to me to be somewhat ‘logically-challenged’: why long division before short division? However, the actual five-part sequence of stages set out on subsequent pages is slightly more logical (although still questionable):

mental division using partition; short division of TU ÷ U; expanded method for HTU ÷ U; short division of HTU ÷ U; and long division.

Stage 1: Mental division using partition

It is recommended that children record mental division as follows:

\[81 \div 3 = (60 + 21) \div 3 \]
\[= (60 \div 3) + (21 \div 3) \]
\[= 20 + 7 \]
\[= 27 \]

I see several conceptual difficulties with this suggestion, over and above the inappropriate formality of the notation, which is, after all, recording for a mental calculation. The main problem concerns the distributivity of division. Multiplication is both left- and right-distributive over addition (and subtraction), whereas division is only right-distributive. This means that 7 \times 12 can be calculated as \((7 \times 4) + (7 \times 8)\) or \((3 \times 12) + (4 \times 12)\), where either number is partitioned.

However, although 84 ÷ 7 is equivalent to \((70 ÷ 7) + (14 ÷ 7)\), it is not equivalent to \((84 ÷ 4) + (84 ÷ 3)\). This suggests opportunities for children to make inappropriate partitionings: they need to remember that only the dividend and not the divisor can be partitioned.

The second problem with this algorithm is that children are expected to be able to make ‘non-canonical partitions’, such as 73 ÷ 60 = 13 or 563 ÷ 400 = 150 + 13. Ross (1989) has shown that children generally find this difficult. Also, if the wrong partition is made, the result can be somewhat ‘messy’.

\[81 \div 3 = (50 + 31) \div 3 \]
\[= (50 \div 3) + (31 \div 3) \]
\[= 16\frac{2}{3} + 10\frac{1}{3} \]
\[= 27 \]

Anghileri (2001) shows the workings of a child calculating 1256 ÷ 6 by finding, separately, 1000 ÷ 6, 200 ÷ 6, 50 ÷ 6 and 6 ÷ 6. These work out, respectively, to 106 r 2, 21 r 2, 8 r 2 and 1, and are then added to give 136 r 6.

Stage 2: Short division of TU ÷ U

I have written elsewhere (Thompson, 2003) about different interpretations of short division – both as a concept and as an algorithm. This guidance paper states that the short division method is to be recorded as:

\[20 \div 7 \]
\[3)60 + 21 \]

This is then to be shortened to:

\[27 \]
\[3)8 21 \]
We are informed that: ‘The carry digit ‘2’ represents the 2 tens that have been exchanged for 20 ones.’ (DfES, 2007: 18).

Interestingly, this is the first time that the concept of ‘exchanging’ has been mentioned in the entire document, despite the fact that there is a detailed section on subtraction. Written subtraction algorithms are often based on a model that involves base-ten materials and the exchange of ‘flats’ for ‘longs’ (hundreds for tens) and ‘longs’ for ‘ones’. The subtraction method recommended in this document, however, is based on the concept of ‘re-partitioning’ (although the word is never actually used). Given the difficulties that children experience with exchanging in subtraction, even when preparatory work has been done with base-ten materials (Hart, 1989), it is difficult to believe that the recommended progression will be any more successful.

The progression from the third calculation to the fourth calculation also involves a shift from the quantity value aspect of place value (80 and 1) to the column value aspect (8 tens and 1 one) discussed in earlier articles in this series (Thompson, 2007 and 2008). However, this particular shift is slightly more complicated, in that children have to be able to partition 81 into 60 and 21, as illustrated in the third calculation, and then switch to interpreting 81 as 6 tens and 21 ones. Given the research mentioned above (Ross, 1989) that children have great difficulty making ‘non-canonical partitions’ such as 81 = 60 + 21, it would be informative to ascertain how easy they find the idea of 81 being equivalent to 6 tens and 21 ones.

Stage 3: ‘Expanded’ method for HTU ÷ U

The recommended method is the one we have come to know as ‘chunking’, where multiples of the divisor are subtracted from the number to be divided (the dividend).

```
  6)196
  - 180
  ----
    16

  - 12
  ----
   4
```

Answer: 32r4

Having done some preliminary work on the development of estimation strategies, children are expected to progress to the following, more succinct notation:

```
  6)196
  - 180
  ----
   16

  - 12
  ----
   4
```

Answer: 32r4

The way in which the strategy is presented in the document gives the impression that it comes in just two forms: you either repeatedly subtract the smallest multiple of ten of the divisor or you subtract the largest. In fact, the strength of the chunking algorithm lies in its great potential for differentiation: it allows for a range of levels of sophistication in children’s confidence and understanding, in that the less confident can remove small chunks; the more confident can take away larger chunks; and the most confident can subtract the maximum-sized chunks. A more detailed analysis of this strategy can be found in Thompson (2005).

Stage 4: Short division of HTU ÷ U

In addition to the issues raised above, concerning the introduction of short division in stage 2, the following question is offered: Why do we need to teach a conceptually difficult strategy for dividing a three-digit number by a single-digit number when the chunking method introduced in stage 3 for solving three-digit by two-digit divisions is much easier to understand, allows for differentiation and is probably more effective?

Stage 5: Long division

The recommended method in this section involves estimating to find the maximum amount to subtract initially, as in stage 3, and then continuing with the standard chunking procedure.

```
  24)560
  - 480
  ----
   80

  - 72
  ----
   8
```

Answer: 23r8

One reason offered for the rather strange positioning of the 20 and the 3 down the left-hand side is to keep the links with ‘chunking’ — although I would have thought that the notation down the right-hand side and the calculation procedure itself might do that! A second reason given is that it reduces the errors that tend to occur with the positioning of the first digit of the quotient. As the first digit of the quotient is 2, written as 20 on
both the right- and the left-hand side, I have difficulty in understanding what this talk of ‘positioning’ is all about. Also, as the answer is to be written at the bottom of the procedure, the extra inclusion of the 20 and the 3 down the left-hand side seems to be adding another level of potential confusion.

\[
\begin{array}{c}
23 \\
24)560 \\
480 \\
72 \\
80 \\
8 \\
\end{array}
\]

\text{Answer: } 23r8

The document then tries to argue that the notation illustrated above is, in effect, the standard long division method. However, the language and thinking associated with the chunking method runs something like:

I need to find out how many 24s there are in 560. I know that there are ten of them in 240 and so there are twenty of them in 480. If I take this from 560 I get 80. Two 24s are 48, so four 24s are 96 but this is too big. 48 plus 24 is 72, and 72 from 80 leaves 8. So, the answer is 20 and 3, that’s 23, remainder 8.

On the other hand, the procedure in the standard long division algorithm demands a very different way of thinking and reasoning. It utilises a different vocabulary and a different aspect of place value: it involves a shift from quantity value to column value.

The patter associated with the standard algorithm goes something like:

24 into 5 doesn’t go. 24 into 56 goes twice. Two 24s are 48, so write 48 under the 56 and subtract to leave 8. Write the 2 on the top line above the 6 of 560, and bring down the zero of 560 to make 80. Three 24s are 72. Write the 72 under the 80 and the 3 on the top line above the zero of 560. Subtracting 72 from 80 leaves 8, so the answer is 23 remainder 8.

The resulting written work looks almost exactly like that in calculation in blue above (except that there would be no zero after 48). However, the reasoning, the place value interpretation, the concepts underpinning the procedures and the accompanying pattern are very different indeed. This suggests that there is not a particularly smooth transition from the language and reasoning associated with chunking to the language of the standard algorithm.

\textbf{Conclusion}

An Ofsted report on the teaching of calculation in primary schools (Ofsted, 2002) states the following:

‘However, at Key Stage 2 they [teachers] often overlook the importance of linking pupils’ mental strategies to the introduction of expanded and compact written methods.’ (p3)

This belief in a natural progression permeates many NNS and PNS publications, QCA documents and HMI reports. However, I think I have shown in this series of articles that this progression is not as natural as it appears to be, and that more thought needs to be given – and more research carried out – concerning the seamless links suggested in this guidance paper.

Moreover, there is too much emphasis in the document on advancing children to compact methods for all four basic operations as quickly as possible. For the vast majority of children it would be more useful to focus particularly on algorithms that, unlike compact algorithms, have in-built variability that allows for the important principle of differentiation. The following algorithms fit neatly into this category: subtraction by complementary addition, multiplication by the grid method and division by chunking.

Another important aspect of the discussion is that often what appears to be logically or mathematically sound is not necessarily always pedagogically sound. Many of the recommendations in this guidance paper are made from the perspective of the experienced, mathematically-literate adult, without taking into account the available research findings about how children develop calculation strategies and learn written procedures. This situation obtains particularly with reference to the final step in the recommendations for each of the four basic arithmetical operations, when children have to complete the progression to the compact (ie, ‘standard’) method. In each case this step involves a major shift in the way the digits in the numbers are interpreted: a shift from treating them as quantities to treating them as digits in columns. Work needs to be done on ways of helping children to make this important step.

In a seminal article written almost 30 years ago, Plunkett (1979) argued that the reasons for teaching standard algorithms were out of date then, and that their use led to:

‘... frustration, unhappiness and a deteriorating attitude to mathematics.’ (p4)

Plus ça change, plus c’est la même chose!

Ian Thompson is Visiting Professor at Northumbria University.

The four articles in this series are available as an e-book from the ATM website: www.atm.org.uk/buyonline.
The attached document has been downloaded or otherwise acquired from the website of the Association of Teachers of Mathematics (ATM) at www.atm.org.uk

Legitimate uses of this document include printing of one copy for personal use, reasonable duplication for academic and educational purposes. It may not be used for any other purpose in any way that may be deleterious to the work, aims, principles or ends of ATM.

Neither the original electronic or digital version nor this paper version, no matter by whom or in what form it is reproduced, may be re-published, transmitted electronically or digitally, projected or otherwise used outside the above standard copyright permissions. The electronic or digital version may not be uploaded to a website or other server. In addition to the evident watermark the files are digitally watermarked such that they can be found on the Internet wherever they may be posted.

Any copies of this document MUST be accompanied by a copy of this page in its entirety.

If you want to reproduce this document beyond the restricted permissions here, then application MUST be made for EXPRESS permission to copyright@atm.org.uk

The work that went into the research, production and preparation of this document has to be supported somehow.

ATM receives its financing from only two principle sources: membership subscriptions and sales of books, software and other resources.

Membership of the ATM will help you through

Now, this bit is important - you must read this

• Six issues per year of a professional journal, which focus on the learning and teaching of maths. Ideas for the classroom, personal experiences and shared thoughts about developing learners’ understanding.
• Professional development courses tailored to your needs. Agree the content with us and we do the rest.
• Easter conference, which brings together teachers interested in learning and teaching mathematics, with excellent speakers and workshops and seminars led by experienced facilitators.
• Regular e-newsletters keeping you up to date with developments in the learning and teaching of mathematics.
• Generous discounts on a wide range of publications and software.
• A network of mathematics educators around the United Kingdom to share good practice or ask advice.
• Active campaigning. The ATM campaigns at all levels towards: encouraging increased understanding and enjoyment of mathematics; encouraging increased understanding of how people learn mathematics; encouraging the sharing and evaluation of teaching and learning strategies and practices; promoting the exploration of new ideas and possibilities and initiating and contributing to discussion of and developments in mathematics education at all levels.
• Representation on national bodies helping to formulate policy in mathematics education.
• Software demonstrations by arrangement.

Personal members get the following additional benefits:

• Access to a members only part of the popular ATM website giving you access to sample materials and up to date information.
• Advice on resources, curriculum development and current research relating to mathematics education.
• Optional membership of a working group being inspired by working with other colleagues on a specific project.
• Special rates at the annual conference
• Information about current legislation relating to your job.
• Tax deductible personal subscription, making it even better value

Additional benefits

The ATM is constantly looking to improve the benefits for members. Please visit www.atm.org.uk regularly for new details.

LINK: www.atm.org.uk/join/index.html