Stored Energy

Introduction. We all rely on energy being stored in various ways. This may be medium term storage in batteries, short term storage in capacitors and springs or a whole variety of other storage techniques. It is interesting that the formulas for different types of stored energy have the same form.

Kinetic Energy

The kinetic energy (KE) of an object of mass m is given by the work required to accelerate it from rest.

$$ F = ma = m \frac{dv}{dt} = m \frac{dx}{dt} \frac{dv}{dx} = mv \frac{dv}{dx} . $$

From this we have work done (WD)

$$ \int_0^x F dx = m \int_0^v dv = \frac{1}{2} mv^2 $$

Therefore KE = $\frac{1}{2} mv^2$

Electrical Energy

The energy stored by a charged capacitor is given by the work needed to transfer charge from one capacitor plate to the other.

The charge held by a capacitor is given by $Q = CV$ where $V = \text{p.d.}$ across the plates and $C = \text{capacitance}.$

The WD in moving δQ is $V \delta Q$

Therefore WD in charging is given by

$$ \int_0^Q \frac{Q}{C} dQ = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2 $$

Thus energy stored = $\frac{1}{2} CV^2$

Spring Energy

The force of a stretched spring is given by $F = kx$, where k is the spring constant and x the extension.

The WD in stretching the spring is given by

$$ \int_0^x F dx = k \int_0^x x dx = \frac{1}{2} kx^2 $$

Therefore the energy stored in the spring is given by $\frac{1}{2} kx^2$

Rotational Energy

The rotational equivalent of Newton's second law is

$$ C = I \frac{d \omega}{dt} = I \frac{d \theta}{dt} \frac{d \omega}{d \theta} = I \omega \frac{d \omega}{d \theta} $$

Where $C = \text{the couple}$, $I = \text{moment of inertia}$, $\omega = \text{angular velocity}$.

WD in rotating a body through θ against a couple C is

$$ \int_0^\theta C d \theta = I \int_0^\omega d \omega = \frac{1}{2} I \omega^2 $$

Thus the energy stored by a rotating object is give by $\frac{1}{2} I \omega^2$