Book review

by Alf Coles.

This book is the first one in a series on Mathematical Thinking, being produced by the African Institute for Mathematical Sciences Schools Enrichment Centre (AIMSSEC) and published by Cambridge University Press, with contributions from many ATM members. The website (http://aimssec.ac.za/) contains details of forthcoming books, whose relevance and potential reach extend well beyond Africa.

AIMSSEC was set up in 2003 by Toni Beardon, who founded NRICH; it is a not-for-profit organisation that offers professional development to teachers, advisors and teacher trainers involved in mathematics in schools in South Africa. The heart of Mathematical thinking in the lower secondary classroom is a section containing 20 workshops for teachers, a distillation of the activities and courses offered by AIMSSEC, which have been trialled and tested and refined over the last 14 years. There are activities here that I see as classically ‘ATM’ and for anyone new to the organisation, this is as good a way as any to get a sense of its collective history. The idea of the book is that the workshops will provide material and stimulus for a group of teachers to collaborate, each workshop lasting up to 2 hours. There is also an introductory section, on six teaching strategies (I particularly liked “visual and practical learning” and “people maths”) and a concluding section discusses teaching and learning with technology and approaches to formative assessment.

When I was head of mathematics in a secondary school, I could imagine using one of these workshops as the content for a department meeting. Advice I was given (by Laurinda Brown) that I always found useful, was a technique for creating time in meetings for curriculum development, by never using them as a space for discussing decisions. If something needed a decision, a head of department can take it upon themselves to speak to each teacher in the department individually and get a sense of their views. If most seem in favour, then the item can be raised and quickly agreed to; if it is clear there are significant disagreements, then there is no point in raising the issue at a meeting and instead, more work is needed to find alternative courses of action. Any items of information can be put on a piece of paper, so that only clarifying questions need be discussed as a group and the rest of any meeting time can be for working on some mathematics together!

Each workshop in the book is a chapter that follows the same 8-page format. The first page links the workshop to one of the teaching strategies from the first section, there are then two pages of activities for teachers, a distillation of the activities and courses offered by AIMSSEC, which have been trialled and tested and refined over the last 14 years. There are activities here that I see as classically ‘ATM’ and for anyone new to the organisation, this is as good a way as any to get a sense of its collective history. The idea of the book is that the workshops will provide material and stimulus for a group of teachers to collaborate, each workshop lasting up to 2 hours. There is also an introductory section, on six teaching strategies (I particularly liked “visual and practical learning” and “people maths”) and a concluding section discusses teaching and learning with technology and approaches to formative assessment.

One chapter that caught my eye, and gives a good flavour of the whole book, was Chapter 8 “Functions and inverse functions”. The relevant teaching strategies suggested were “visual” and also “getting feedback”. The activities (for teachers and classroom) centre around a description of the “Function game”. This is an activity that has a rich connection to ATM. It’s likely first description is in Starting points (1972) by Banwell, Saunders and Tahta; there is also a description of the game in the publication An addendum to Cockcroft (1982) by Brown and Waddingham, available (for free) on the STEM website (https://www.stem.org.uk/elibrary/resource/31296). In essence, the teacher has a rule in mind (for example, ‘double and add one’, writes on the board a couple of input/outputs and then invites the class to complete the next one, so the board (for a different rule!) might look like:

\[
\begin{align*}
2 & \rightarrow 5 \\
6 & \rightarrow 37 \\
4 & \rightarrow \n\end{align*}
\]

At which point, the pen is offered to the class; a student volunteers to come to the board and complete
the output. The teacher can respond with a J or a L. As suggested in this book, the game is best played in silence.

The 8 pages of this chapter give as good an introduction as is possible in text, to this complex and powerful activity. The chapter is a good example of how collaborative working is so important – if you have not seen the game used before, I imagine it is hard to get a sense of possibilities. However, working together with other teachers (as is intended in the book), it would be possible to get a sense of how this activity might work in the classroom and what it could lead to.

My paradigmatic example of the function game was seeing Laurinda Brown play it with a year 8 class of mine. There are existing videos available, for example, on the video mosaic website (http://videomosaic.org/home) there are clips of teachers (e.g., Arthur Powell who was a collaborator with Gattegno) and others using this activity, which they label "Guess my rule" (you can search under “Select a Math Problem”. There is a (not very good quality) video of my own use of the game, on the NRich website (http://nrich.maths.org/6808&part=), this was a slightly artificial situation in that it was an invited group of students at the school where I used to teach, rather than a real class and I think the video (partly as a result of its editing) fails to give much sense of the slow pace and the way that focus and concentration can build.

I remember when I first saw Laurinda use this game, I thought that she needed to publicise ‘function game for the world’ as it just seemed so powerful – with students visibly excited at grappling with algebraic thinking. I would hesitate to be so sweeping these days, but I am delighted that this current book is contributing to just that agenda!

Ideas within the workshops will be known to some readers but their presentation, aimed first at teachers and then at the classroom, works effectively and is timely. It is surely our awarenesses as teachers that we need to develop, in order to better meet the needs of our learners, and it is equally sure that this is most effectively done collaboratively. This book is certainly one I would want on the shelf in my department.

How many cranes?

Paul Stephenson offers a problem for you to work on with, or without, your students.

Things are easy to count as long as they do not move. The magic of photography achieves this. Without a camera you have to make a snap judgement. Pattern helps. The number of circles on the right is clear, but on the left? I would guess more than 50 but I could not tell you whether the number was nearer 50 or 100.

Try the circles, then the cranes. First make your ‘snap judgement’, then count them one by one. To see a full sized image of the cranes go to http://magicmathworks.org/wp-content/uploads/How-many-cranes.pdf.

In the case of the cranes a serious observer would aim at a number accurate to one significant figure. The cranes were photographed as they passed over the Ruhr on their autumn migration from Scandinavia to southern Spain.

Paul Stephenson is operations director of The Magic Mathworks Travelling Circus.
The attached document has been downloaded or otherwise acquired from the website of the Association of Teachers of Mathematics (ATM) at www.atm.org.uk

Legitimate uses of this document include printing of one copy for personal use, reasonable duplication for academic and educational purposes. It may not be used for any other purpose in any way that may be deleterious to the work, aims, principles or ends of ATM. Neither the original electronic or digital version nor this paper version, no matter by whom or in what form it is reproduced, may be re-published, transmitted electronically or digitally, projected or otherwise used outside the above standard copyright permissions. The electronic or digital version may not be uploaded to a website or other server.

Any copies of this document MUST be accompanied by a copy of this page in its entirety. If you want to reproduce this document beyond the restricted permissions here, then application must be made for express permission to copyright@atm.org.uk

ATM is a not for profit professional teaching association. The majority of funding used to produce and prepare the MT journal is procured through our membership subscriptions.

Mathematics Teaching does not seek to conform to an ‘official’ view on the teaching of mathematics, whatever that may be. The editorial board wishes to encourage contributors to express their personal views on the teaching and learning of mathematics.

ATM is an association of teachers in which everyone has a contribution to make, experiences and insights to share. Whether practical, political, philosophical or speculative, we are looking for articles which reflect on the practice of teaching mathematics. We aim to publish articles that will be of interest to the breadth of our membership, from the Foundation Stage to Higher and Further Education; as well as a balance between those derived from research and from practical experience. Submitted articles are accepted for publication based on their clarity, topicality, the extent to which they reflect upon knowledge and understanding of mathematics teaching and learning, and their contribution to inspiring further development and research.

Join ATM at any time and receive twelve months of membership, including instant access to member discounts and resources. Spread the cost and pay in ten monthly instalments.

Membership Includes:

- Five copies of the ATM journal Mathematics Teaching (MT)
- A 25% discount on all shop items
- Considerable discounts at the hugely popular annual ATM conference
- Electronic access to thousands of online MT journal articles
- Access to all online member-only resources
- Professional support and enrichment – being part of a community where ideas are generated and shared
- Regular ATM e-newsletters, containing current news and activities
- A network of local branches offering regular meetings
- Accreditation - ATM is proud to offer members the opportunity to apply for the CMathTeach Designation, making ATM membership the route to Charted Mathematics Teaching status
- Influence and having a voice - eligibility to vote on resolutions that shape the direction of ATM