The Cuisenaire product finder Paul Stephenson

Readers delighted by the simplicity of the method of multiplication shown in MT203 (Foster, 2007) may be interested in a Gattegno-inspired variant. Each set of intersections in the representation Colin Foster describes corresponds to a ‘window’ pane in the method known by that or similar names (‘lattice’/‘gelosia’/...). This may be as old as place value itself and, if so, goes back to the Ancient Hindus. In ‘line multiplication’ each individual product is modelled as a rectangle of points, whereas in the lattice method, as it has come down to us via the Arabs and later European texts, each product is shown as a written number. However, in both cases the position of the number in the ‘lattice’ dictates its place value. What Gattegno does is to use the multiplication square as a ‘ready reckoner’ and code the place value of each individual product by its colour. The colour arises from the overlap of tinted acetates – the process of colour subtraction (using that word to mean the physical, not the mathematical, operation, of course). The picture to the right shows the Cuisenaire Product Finder set to multiply 973 by 682.

Paul Stephenson is operations director of The Magic Mathworks Travelling Circus. www.magicmathworks.org

Reference

Notes
2 The Product Finder was issued by The Cuisenaire Company of America, Inc, in 1983. It is no longer in their catalogue but an internet search may turn up second-hand copies. An alternative is for you – or, better still, your pupils – to make them. The tints need not correspond to those of the original acetates but should be chosen to produce distinct colours when overlaid.

Misunderstanding of fractions! Caroline Rickard

Having just spent an hour with a Y5 class investigating their understanding of various aspects of fractions (including ratio), I wanted to share some of my observations. Not because they necessarily illustrate particular insight, nor to offer fantastic solutions, but rather because they serve as useful reminders of what children find hard. The questions were taken from an article ‘Drawing on a theoretical model to study students’ understandings of fractions’ (Charalambous and Pitta-Pantazi, 2007) but were presented in a random order rather than grouped as in the original article. I gave the questions initially as a test, asking the children to have a go at them on their own, not worrying about bypassing any they couldn’t do. After about 20 minutes I collected these in and gave out fresh sheets of the same questions, but this time to pairs of children. I asked them to talk together about the questions they had tried and to be prepared to report back on:

- any questions they had answered in the same way and were sure were right;
- any questions answered differently and which they had been unable to resolve.

The following questions proved the most controversial! This first question was attributed to Noelting (1978; in Charalambous and Pitta-Pantazi, 2007) and states:

John and Mary are preparing orange juice for their party. Presented below are the recipes they used. What recipe will make the juice most ‘orangey’?

John’s recipe: Two cups of concentrate juice – five cups of water
Mary’s recipe: Four cups of concentrate juice – eight cups of water.

The two girls who chose to talk about this question chose it because they were sure they were right, and indeed they were, giving some sound reasoning.
Membership of the ATM will help you through

Now, this bit is important - you must read this

• Six issues per year of a professional journal, which focus on the learning and teaching of maths. Ideas for the classroom, personal experiences and shared thoughts about developing learners’ understanding.
• Professional development courses tailored to your needs. Agree the content with us and we do the rest.
• Easter conference, which brings together teachers interested in learning and teaching mathematics, with excellent speakers and workshops and seminars led by experienced facilitators.
• Regular e-newsletters keeping you up to date with developments in the learning and teaching of mathematics.
• Generous discounts on a wide range of publications and software.
• A network of mathematics educators around the United Kingdom to share good practice or ask advice.
• Active campaigning. The ATM campaigns at all levels towards: encouraging increased understanding and enjoyment of mathematics; encouraging increased understanding of how people learn mathematics; encouraging the sharing and evaluation of teaching and learning strategies and practices; promoting the exploration of new ideas and possibilities and initiating and contributing to discussion of and developments in mathematics education at all levels.
• Representation on national bodies helping to formulate policy in mathematics education.
• Software demonstrations by arrangement.

Personal members get the following additional benefits:

• Access to a members only part of the popular ATM website giving you access to sample materials and up to date information.
• Advice on resources, curriculum development and current research relating to mathematics education.
• Optional membership of a working group being inspired by working with other colleagues on a specific project.
• Special rates at the annual conference
• Information about current legislation relating to your job.
• Tax deductible personal subscription, making it even better value

Additional benefits

The ATM is constantly looking to improve the benefits for members. Please visit www.atm.org.uk regularly for new details.

LINK: www.atm.org.uk/join/index.html