This small project comprised:

- two weeks of maths lessons at a Pupil Referral Unit in Buckinghamshire
- two Y10 pupils who had been permanently excluded from mainstream school
- one hopeful, excited and eventually relieved maths teacher
- MSWLOGO, a wonderful and totally free resource

Motivation is often increased in mathematics by the use of ICT and/or Art. Curve stitching never ceases to impress pupils who have not seen the effect before – how do you get curves from straight lines? Hence the idea to get KS4 pupils to program the computer to curve stitch. By embedding this program in more complex programs they were able to produce beautiful and colourful patterns.

First I got them to draw the $10 \times 10, 90^\circ$ curve stitch pattern by hand. The pupils were already familiar with the basic LOGO commands and knew how to write a simple program. I introduced Pythagoras’ Theorem as a means of calculating the lengths and trigonometry, the tangent function, as a means of calculating the angles.

The pupils could calculate the lengths and angles and, referring to their curve stitch drawing, check their answers were in the right ‘ball-park’ by measuring. Once the values were checked they began to create their program ‘stitch’ (figure 1).

These were then used to make patterns at which to marvel (figures 2, 3 & 4).

One of the pupils was desperate to recreate the equilateral triangle and subsequent patterns he had seen in John Millington’s book Curve stitching. [1] Warily I told him that the maths would be very hard but he still wanted to give it a go. Cosine rule and

"L’ORIGINALITAT CONSISTEIX A RETORNAR A L’ORIGEN" – AS GAUDI WOULD SAY

Paula McLoughlin
sine rule were needed and he valiantly fed numbers into formulae but the ensuing program did not work for the first three values. I realised, a little belatedly, that I needed to refer to the sine wave to explain to him how to calculate the equivalent obtuse angle from the acute ones he had obtained from the formula. My concern that the complexity of the maths would leave his head reeling were allayed by his: “so you just take the angle off 180 to get the one we want” and a couple of edits later he had the first vertex “stitched” (figure 5).

With the introduction of setpc[] he decided not to use repeats so as to create a three-coloured equilateral triangle (figure 6).

Once he had the 90° and 60° curve stitch programs and knew how to alter colours the patterns were endless …

I think we’ll pause there for breath and do the epicycloids by hand, with a pencil and then embroidery thread!

Your homework is to match the pictures to the programs – ENJOY!

Paula McLoughlin is the mathematics and ICT co-ordinator at The Chilbec Centre PRU, Chesham.

The LOGO code is available as a text file from the ATM web site. Paste it into the LOGO editor.

to stitch
 fd 100*3 rt (180-5.7) fd 100.5*3 rt (90 + 5.7) fd 10*3 rt 90
 fd 90*3 rt (180-12.5) fd 92.1*3 rt (90 + 12.5) fd 20*3 rt 90
 fd 80*3 rt (180-20.5) fd 85.4*3 rt (90 + 20.5) fd 30*3 rt 90
 fd 70*3 rt (180-29.7) fd 80.6*3 rt (90 + 29.7) fd 40*3 rt 90
 fd 60*3 rt (180-39.8) fd 78.1*3 rt (90 + 39.8) fd 50*3 rt 90
 fd 50*3 rt (180-50.2) fd 78.1*3 rt (90 + 50.2) fd 60*3 rt 90
 fd 40*3 rt (180-60.3) fd 80.6*3 rt (90 + 60.3) fd 70*3 rt 90
 fd 30*3 rt (180-69.5) fd 85.4*3 rt (90 + 69.5) fd 80*3 rt 90
 fd 20*3 rt (180-77.5) fd 92.1*3 rt (90 + 77.5) fd 90*3 rt 90
 fd 10*3 rt (180-84.3) fd 100.5*3 rt (90 + 84.3) fd 100*3 rt 90
 END

to circle
 repeat 4 [stitch fd 300 rt 90]
end

to shape
 repeat 4 [stitch rt 90 circle rt 90]
end

to start
 repeat 4 [stitch rt 90]
end

to diamond
 star fd 300 rt 90 repeat 4 [fd 300 rt 90 stitch fd 300]
end

to stitch
 FD 1000/2 RT (180 - 5.7) FD 1005/2 RT (90 + 5.7) FD 100/2 RT 90
 FD 900/2 RT (180 - 12.5) FD 921/2 RT (90 + 12.5) FD 200/2 RT 90
 FD 800/2 RT (180 - 20.5) FD 854/2 RT (90 + 20.5) FD 300/2 RT 90
 FD 700/2 RT (180 - 29.7) FD 806/2 RT (90 + 29.7) FD 400/2 RT 90
 FD 600/2 RT (180 - 39.8) FD 781/2 RT (90 + 39.8) FD 500/2 RT 90
 FD 500/2 RT (180 - 50.2) FD 781/2 RT (90 + 50.2) FD 600/2 RT 90
 FD 400/2 RT (180 - 60.3) FD 557/2 RT (90 + 60.3) FD 700/2 RT 90
 FD 300/2 RT (180 - 77.5) FD 608/2 RT (90 + 77.5) FD 800/2 RT 90
 FD 200/2 RT (180 - 84.3) FD 1005/2 RT (90 + 84.3) FD 1000/2 RT 90
 END

to marvel
 repeat 4 [stitch rt 90]
 repeat 4 [stitch rt 90]
 rt 45
 repeat 4 [stitch rt 90]
 repeat 4 [stitch rt 90]
end

to triangle
 FD 1000/4 LT 120 FD 100/4 LT (180 - 114.8) FD 954/4 LT (60 + 114.8)
 FD 1000/4 LT 120 FD 200/4 LT (180 - 107.88) FD 819/4 LT (60 + 107.88)
 FD 900/4 LT 120 FD 300/4 LT (180 - 98.21) FD 700/4 LT (60 + 98.21)
 FD 800/4 LT 120 FD 400/4 LT (180 - 85.61) FD 608/4 LT (60 + 85.61)
 FD 700/4 LT 120 FD 500/4 LT (180 - 68.89) FD 557/4 LT (60 + 68.89)
 FD 600/4 LT 120 FD 600/4 LT (180 - 49.44) FD 557/4 LT (60 + 49.44)
 FD 500/4 LT 120 FD 700/4 LT (180 - 34.73) FD 608/4 LT (60 + 34.73)
 FD 400/4 LT 120 FD 800/4 LT (180 - 21.79) FD 700/4 LT (60 + 21.79)
 FD 300/4 LT 120 FD 900/4 LT (180 - 12.79) FD 819/4 LT (60 + 12.79)
 FD 200/4 LT 120 FD 1000/4 LT (180 - 5.21) FD 954/4 LT (60 + 5.21)
end

to tri
 setpc [255 000 200] triangle fd 100/4 lt 120
 setpc [000 255 100] triangle fd 100/4 lt 120
 setpc [000 000 100] triangle fd 100/4 lt 120
end

to try
 repeat 6 [tri fd 100 lt 60]
end
The attached document has been downloaded or otherwise acquired from the website of the Association of Teachers of Mathematics (ATM) at www.atm.org.uk. Legitimate uses of this document include printing of one copy for personal use, reasonable duplication for academic and educational purposes. It may not be used for any other purpose in any way that may be deleterious to the work, aims, principles or ends of ATM.

Neither the original electronic or digital version nor this paper version, no matter by whom or in what form it is reproduced, may be re-published, transmitted electronically or digitally, projected or otherwise used outside the above standard copyright permissions. The electronic or digital version may not be uploaded to a website or other server. In addition to the evident watermark the files are digitally watermarked such that they can be found on the Internet wherever they may be posted.

Any copies of this document MUST be accompanied by a copy of this page in its entirety.

If you want to reproduce this document beyond the restricted permissions here, then application MUST be made for EXPRESS permission to copyright@atm.org.uk.

The work that went into the research, production and preparation of this document has to be supported somehow.

ATM receives its financing from only two principle sources: membership subscriptions and sales of books, software and other resources.

Membership of the ATM will help you through

- Six issues per year of a professional journal, which focus on the learning and teaching of maths. Ideas for the classroom, personal experiences and shared thoughts about developing learners’ understanding.
- Professional development courses tailored to your needs. Agree the content with us and we do the rest.
- Easter conference, which brings together teachers interested in learning and teaching mathematics, with excellent speakers and workshops and seminars led by experienced facilitators.
- Regular e-newsletters keeping you up to date with developments in the learning and teaching of mathematics.
- Generous discounts on a wide range of publications and software.
- A network of mathematics educators around the United Kingdom to share good practice or ask advice.
- Active campaigning. The ATM campaigns at all levels towards: encouraging increased understanding and enjoyment of mathematics; encouraging increased understanding of how people learn mathematics; encouraging the sharing and evaluation of teaching and learning strategies and practices; promoting the exploration of new ideas and possibilities and initiating and contributing to discussion of and developments in mathematics education at all levels.
- Representation on national bodies helping to formulate policy in mathematics education.
- Software demonstrations by arrangement.

Personal members get the following additional benefits:

- Access to a members only part of the popular ATM website giving you access to sample materials and up to date information.
- Advice on resources, curriculum development and current research relating to mathematics education.
- Optional membership of a working group being inspired by working with other colleagues on a specific project.
- Special rates at the annual conference
- Information about current legislation relating to your job.
- Tax deductible personal subscription, making it even better value

Additional benefits

The ATM is constantly looking to improve the benefits for members. Please visit www.atm.org.uk regularly for new details.

LINK: www.atm.org.uk/join/index.html