Alexander (2010) in his report on primary education refers to the need ‘to develop pupils’ increasing sense of responsibility for what and how they learn…to help children to recognise that knowledge is not only transmitted but also negotiated and re-created’ (p.199).

The report also recognises the need for ‘lessons and activities that give children opportunities to take the lead in their learning to enable them to develop a sense of responsibility and self-confidence’ (p.283). One of the report’s guiding principles for improving teaching is that teaching, ‘Promotes the active engagement of the learner’ (p.303), under which heading it includes teaching ‘a repertoire of learning strategies’. How can we meet this in mathematics teaching?

One of several approaches which would help children to develop these attributes is to adopt an investigative style of teaching and learning. Investigations were first given prominence in the Cockcroft Report in 1982, alongside other ways of presenting mathematics. In an investigative approach by the teacher a situation is set where learners have the opportunity to explore the mathematics. Pupils can choose how they go about the task but they must explain what they have done, why they did it that way, and what happened. The teacher acts as a facilitator through adopting a questioning style which focuses the children’s observations. The emphasis is on discovery, but also on the processes of enquiry. This process has to be taught and should become a way of working for children which would support the development of many of the attributes referred to by Alexander.

In an attempt to illustrate this style, here are two examples which compare a traditional to an investigative way of working.

Example 1

Approach 1

The volume of a cuboid can be found by multiplying length x breadth x height.

Find the volume of the following cuboids.

Approach 2

Make a rectangular shape with the multi link cubes. How many cubes are there altogether? How many cubes are there along each side? Make some different rectangular shapes and count the cubes along each side, and altogether. Is there a pattern with these numbers where something similar happens with each of these rectangles? Do you think this happens for all rectangles? What happens when we add some more layers to each rectangle? How many cubes are there now? Can you say whether you think this pattern will happen with other cuboids? Why? Predict an answer and then make the cuboid to see if you are right. Explain to the class what you have discovered.

Example 2

Approach 1

Today we are going to plot the six-times-table together on the 100 square.

Approach 2

Plot the first six answers to the two and three times table on a grid. What do you notice about the answers? Can you predict the next three times they will coincide? Were you right? Can you give a name to this new pattern? Tell me how the 2 and 3 times tables relate to the 6 times table.

Before dismissing this way of working as time consuming in a pressured curriculum and assessment environment, consider whether the learners will remember the mathematics, whether they have progressed beyond the basic objective, and understand the link between area and volume, or the relationship between the 2, 3 and 6 times table, whether they were engaged and curious, and whether they have used the skills and processes of being a real mathematician along the way?

By working in this way the children have had the opportunity to choose how they progress, to seek patterns in the mathematics, to make decisions, to be required to justify their decision making, and to test their assumptions or hypotheses. Also, learners are expected to be able to articulate the process and the results of their work. I suggest this reporting should be about pupils ‘telling everyone’, or ‘someone’ about what they did, explaining why things happen, considering why and whether it works every time and would it work if you changed this particular bit? After all, mathematics is about discovering patterns and relationships and applying...
them to new situations, whether in a creative or a practical way.

And the teachers’ role in this process will be most effective if they prompt and question rather than tell, if they allow enough time for the children to carry out the task, if they make available resources for children to select for themselves, if they hold back for a little while when they can see children heading towards a dead end, but facilitate at an appropriate moment, if they listen to the children and allow children to inform them, if they overtly discuss the strategies used and provide opportunities to investigate mathematics even when key learning objectives must be addressed. It is also important that the processes are discussed and shared with all learners.

This investigative approach is about a style of pupil learning which gives children strategies and process skills which they can apply in other situations, whether it is mathematics, or in other curriculum areas. For the teacher, it is about providing pupils with the opportunity to develop these learning skills, so that they will have the tools to tackle difficulties, the confidence to be more independent, and to engage in the mathematics through opportunities for making choices, making decisions, and providing explanation. In this way children regularly learn to use the processes of mathematical enquiry, to build their strategies, and to consolidate them sufficiently to transfer them to new and different situations.

In addition to taking ownership of the mathematics and their learning, pupils will be establishing a way forward for their future learning in mathematics.

Margaret Sangster is an associate lecturer at Canterbury Christ Church University.

This article is her personal view.

References

The attached document has been downloaded or otherwise acquired from the website of the Association of Teachers of Mathematics (ATM) at www.atm.org.uk. Legitimate uses of this document include printing of one copy for personal use, reasonable duplication for academic and educational purposes. It may not be used for any other purpose in any way that may be deleterious to the work, aims, principles or ends of ATM.

Neither the original electronic or digital version nor this paper version, no matter by whom or in what form it is reproduced, may be re-published, transmitted electronically or digitally, projected or otherwise used outside the above standard copyright permissions. The electronic or digital version may not be uploaded to a website or other server. In addition to the evident watermark the files are digitally watermarked such that they can be found on the Internet wherever they may be posted.

Any copies of this document MUST be accompanied by a copy of this page in its entirety.

If you want to reproduce this document beyond the restricted permissions here, then application MUST be made for EXPRESS permission to copyright@atm.org.uk.

The work that went into the research, production and preparation of this document has to be supported somehow.

ATM receives its financing from only two principle sources: membership subscriptions and sales of books, software and other resources.

Membership of the ATM will help you through

- Six issues per year of a professional journal, which focus on the learning and teaching of maths. Ideas for the classroom, personal experiences and shared thoughts about developing learners’ understanding.
- Professional development courses tailored to your needs. Agree the content with us and we do the rest.
- Easter conference, which brings together teachers interested in learning and teaching mathematics, with excellent speakers and workshops and seminars led by experienced facilitators.
- Regular e-newsletters keeping you up to date with developments in the learning and teaching of mathematics.
- Generous discounts on a wide range of publications and software.
- A network of mathematics educators around the United Kingdom to share good practice or ask advice.
- Active campaigning. The ATM campaigns at all levels towards: encouraging increased understanding and enjoyment of mathematics; encouraging increased understanding of how people learn mathematics; encouraging the sharing and evaluation of teaching and learning strategies and practices; promoting the exploration of new ideas and possibilities and initiating and contributing to discussion of and developments in mathematics education at all levels.
- Representation on national bodies helping to formulate policy in mathematics education.
- Software demonstrations by arrangement.

Personal members get the following additional benefits:

- Access to a members only part of the popular ATM website giving you access to sample materials and up to date information.
- Advice on resources, curriculum development and current research relating to mathematics education.
- Optional membership of a working group being inspired by working with other colleagues on a specific project.
- Special rates at the annual conference
- Information about current legislation relating to your job.
- Tax deductible personal subscription, making it even better value

Additional benefits

The ATM is constantly looking to improve the benefits for members. Please visit www.atm.org.uk regularly for new details.

LINK: www.atm.org.uk/join/index.html